
International Journal of Theoretical Physics, Vol. 1, No. 2 (1968), pp. 191 209. 

D i s p e r s i o n  in  M o m e n t u m  S p a c e  a n d  t h e  
E x i s t e n c e  of  U(t, t') 

R. L. INGRAHAM 

Research Center, New Mexico State University, Las Cruces, New Mexico 8801 

Abstract  

The operator U(t,t ') giving transit ion probabili t ies between finite times or 
connecting free and interacting fields does not  exist (apart  from the ul traviolet  
divergence problem) because of the 3-translation invariance of current quantum 
field theory. To remedy this, the idealization tha t  one has an infinite t ime 
T = co to prepare initial, or measure final, n-particle momentum eigenstates is 
discarded here. I t  is shown tha t  random space-time (which itself eliminates 
ultraviolet  divergences from field theory) implies and fixes uniquely a random 
momentum space if free particle momenta  K are determined by  time-of-flight 
measurements with T < co. In  particular,  the dispersion of K o: mZ/T, where 

is the space-time dispersion and m is the particle mass. Stochastic momentum 
space is incorporated into field theory in a prel iminary way;  because 3-transla- 
t ion form-invariance is slightly violated, the uni tary  U-operator expressed as 
the usual T-exponential  exists and the limit U -+ S as t -+ co, t '  --~ -co is well- 
defined w-ithout ad hoc tricks like the adiabatic cut-off. A frame-dependence is 
necessarily introduced into fields and U-operator, and the transformation 
properties expressing Lorentz eovarianee are of the same more general type  
encountered in previous work on quantum field theory over stochastic space- 
time. 

1. In troduct ion 

I t  is wel l  k n o w n  t h a t  t h e  U o p e r a t o r  w h i c h  c o n n e c t s  t h e  i n t e r a c t i n g  
H e i s e n b e r g  P i c t u r e  f ie ld  a n d  t h e  free ( ' in ' )  f ie ld ( B j o r k e n  & Dre l l ,  1965; 
S e h w e b e r ,  1961a),  or  g ives  t h e  t r a n s i t i o n  p r o b a b i l i t y  b e t w e e n  s t a t e s  
a t  f in i te  t i m e s  ( J a u c h  & R o h r l i c h ,  1955; S e h w e b e r ,  1961b),  does  n o t  
e x i s t  in  t h e  c u r r e n t  f r a m e w o r k  o f  Q F T  ( q u a n t u m  f ield t h e o r y ) .  A p a r t  
f r o m  t h e  u l t r a v i o l e t  d i v e r g e n c e  d i f f icu l ty ,  t h e r e  is a n o t h e r  d i f f i cu l t y  
c o n n e c t e d  w i t h  3 - t r a n s l a t i o n  i n v a r i a n c e  w h i c h  m a n i f e s t s  i t s e l f  in  
p e r t u r b a t i o n  t h e o r y  b y  t h e  a p p e a r a n c e  o f  t h r e e - d i m e n s i o n a l  d e l t a  
f u n c t i o n s  S(0) in  s o m e  m a t r i x  e l e m e n t s .  A s k e t c h  o f  t h e  f o r m a l  p r o o f  
t h a t  U does  n o t  e x i s t  goes  l ike  th i s .  F r o m  t h e  u s u a l  a x i o m s  one  p r o v e s  
( H a a g ,  1962) t h a t  t h e r e  can  be  o n l y  one  homogeneous s t a t e  s ~ s t a t e  
v e c t o r  H i l b e r t  S p a c e :  

P~o = 0 (1.1) 
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where P generates spatial translations in some frame. Now in QFT the 
vacuum #20 is certainly homogeneous. Consider the state #2 -- U(t, t') #20; 
since U is unitary and translationally invariant, we have P~  = 0 and 
I[t~]] = II~Q011 = 1, so #2 is also homogeneous. But #2 is not the same state 
as #20 if either t or t' is finite because, e.g. in Lagrangian field theory 
owing to the local structure of the interaction, U contains terms which 
create a set of particles from t~ 0. Thus #2, and hence U, cannot exist, 
Q.E.D. Below, by an explicit calculation of the vacuum --> one pair, 
one photon component of U in quantum electrodynamics, we shall 
show explicitly how this 8(0) emerges. 

To some, in fact most, theoreticians today, this failure indicates 
that  field theory must be thrown out in toto. The author has never been 
able to understand this drastic attitude. When one considers how 
naturally the U operator theory in T-exponential form formally solves 
the interacting QFT problem--it  suffices here just to read through 
Sections 4-2 and 4-3 of Jaueh and l~ohrlich's book, or Section 17a of 
Schweber's book--i t  would seem much more promising just to look 
for the idealizations in present-day field theory which are making the 
mathematical formalism singular (the divergences, these 8(0), etc.) 
and remove them. That is the guiding idea of this article, which seeks 
a physical cure of this trouble by relaxing some of our rigid present 
idealizations. To look for a pseudo solution by expending much 
mathematical ingeniosity, necessitating close attention to mathe- 
matical rigor, while remaining in the present framework of axioms is 
the farthest thing from my intention. 

And in fact, in a nutshell, here is the cure I propose. As one sees 
from the formal proof tha t  U does not exist, and with even more 
insight from an actual calculation of a matrix element from Feynman 
graphs, the villain is 3-translation invariance. This is (slightly) 
destroyed--enough to make the formalism mathematically meaningful 
- - b y  putting dispersion into momentum space, i.e., by making 
Ps -= 4-momentum of a free particle a random variable. Then it turns 
out, as we show below, that  U exists and goes smoothly into S as 
t --~ +0% t' -~ -oo in virtue of the Riemann-Lebesgue Lemma, without 
the necessity of ad hoc tricks like the adiabatically switched off 
potential, t 

But  why should there be an intrinsic dispersion in momentum 
space ? We assert tha t  this follows from incorporating into the theory 
the two facts: (1) particle momentum is determined via the time-of- 
flight method through particle position measurements, and (2) we do 

-~ Compare, say, Schweber (1961a), p. 322. 
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not dispose of an infinite time to make these measurements (which is 
the present idealisation) but in fact of a finite time T. 

But now there is no limit to the sharpness with which we can 
measure P~ by the time-of-flight method if the space and time co- 
ordinates of events can be measured sharply, even though we only 
have T < co in which to work. On the other hand, even if space-time 
coordinate measurements show an intrinsic uncertainty ~;~, P~ can be 
measured with arbitrary sharpness by taking T long enough. (These 
are evident on a few moments' reflection; see also Section 4.) Thus for 
the standard deviation a of the random variable P~ we must have 
a ~: A / T  so that  either for A -~ 0 or T -> co we fall back on the present 
' U-difficulty.' 

Then one achieves a beautiful economy. Namely, the stochastic 
space-time~ necessary to remove the ultraviolet divergences from U 
and its limit S determines uniquely the stochastic momentum space 
necessary to remove the U-difficulty (sometimes called also the 'Haag 
Theorem' difficulty), as we shall show below. The introduction of a 
stochastic momentum space is not an extra principle, we do not need 
to make extra assumptions, concerning its existence and form, 
independent of those of stochastic space-time provided only we take 
T<oo .  

Just  as in the stochastic QFT theory, the cure proposed here avoids 
rather easily most of the troubles which plague nonloeal theories. One 
pays for this ease by a broadening of the invarianee scheme which 
today is called 'Lorentz invarianee'. As we have argued elsewhere in 
many places,j; one keeps true, essential 'Lorcntz invariance', namely 
the Relativity Principle, which states that  the theory should prefer 
no Lorentz frame. One gives up something which may or may not be 
essential, but in any case is extraneous to the I~elativity Principle. 
The fact is that  a frame-dependence of fields, the S-operator, etc., is 
introduced, which has certain observational consequences which may 
be tested in certain very high-energy experiments.w To date these 
crucial experiments have not been done. 

t Ingraham, R. L. Nuovo cimento, 24, 1117 (1962); 27, 303 (1963). The second 
paper contains also corrections and emendations to the first. See also short 
expositions of the theory in applications to very high energy scattering, e.g. 
Bailey, D. and Ingraham, R. L. (1966). Physical Review, 152, 1290, and in a 
forthcoming book, Renormalization Theory of Quantum Field Theory with a 
Cut-off, to be published by Gordon and Breach. 

E.g., Ingraham, t~. L. (1962). Nuovo eimento, 26, 328, especially Section 3, 
and the last two references of the preceding footnote. 

w Ingraham, R. L. (1967). ICTP Internal  Report No. 11 ; also Nuovo cimento, 
32, 323 (1964); 39, 361 (1965); and Physical Review, 152, 1290 (1966). 
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Since we are groping for new physical ideas, not polishing an 
established theory to final mathematical perfection, our arguments 
will be presented in a sort of a relaxed physical exposition, with not 
much at tempt at rigor or at answering all the questions which could 
be raised. Briefly then, the program of this paper is as follows. First 
we illustrate the U-difficulty on Feynman graphs, then propose ad hoc 
a modification S -> ST of the delta functions in the momentum space 
commutation relations. Necessary conditions on ST which make U 
physical and the limit U -> S well defined are elucidated; these will 
be shown later to be demanded by Poincarg group symmetry and the 
positive definite metric of state vector space 24 ~ . Next, stochastic 
momentum space applied to QFT is developed ab initio, and the 
transformation properties of the stochastic mean fields a(/c; ~ )  are 
found. ST is then derived from the more basic frequency function 
f ( k ' - k )  and shown to have the properties postulated above. After 
that,  we assume tha t  our random P~ is determined in terms of a 
random X~ by the time-of-flight method, and derive f(/c' - /c)  from 
stochastic space-time; it has all the properties demanded by the 
physical arguments sketched earlier. Next the bases in Jgf of 'relatively 
free' particle states generated by the algebra of the a*(/c; ~ )  on the 
vacuum are looked at more closely; in particular they are no longer 
strictly orthonormal. Finally some preliminary thinking is given on 
the question of the relative size of various time parameters for 
optimum accuracy, and whether various limits T - ~  oo, etc. make 
sense. 

2. The U-Di~culty 

Formal application of Lagrangian field theory yields the connection 
r = U(t,-oo)dp(x) U(t,-m) -1 between the free, in-field and inter- 
acting Heisenberg Picture field at time t - x 4. U has the T-exponential 
form 

( / )  U(t,t') = T e x p  - i  dif,(x)d~x 
\ t" 

(2.1) 

where 54f~(x) is the interaction Hamiltonian density formed from the 
in-fields (Bj0rken & Drell, 1965; Schweber, 1961). Consider the state 
f2 =-U(t,-o~)lO ) where 10} is the vacuum; it is homogeneous, as 
explained in the Introduction. We calculate the 0(e) part ~o (1) of the 
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1-pair, ].-photon component co of s in quantum eleetrodynamics, 
namely 

c~ (~) =_ f d~pd3qd3k]p ,q , k>(p ,q , k ]  U(~)(t,-+)10} (2.2) 

The Feynman diagram gives immediately for the matrix element, 
with an obvious abbreviation 

<3l u l o> = ~(p + q + k) exp (iEt - ~1~I) ~(p, q) 
E (2.3) 

E ---- E(p, q) - (p2 + m~) ~/'z + (@ + m2) 1/~ + [p + q[, z -> 0+ 

where z is the adiabatic cut-off~ and G(p, q) is continuous and bounded. 
Of course, in the limit t -+ § the exponential factor goes into 8(E) = 0, 
so that  for the S-operator this matrix element is zero because energy 
camaot be conserved in this transit, ion. Now 

/ d~p q d ~ p ' d ~ q ' S ( p - p ' ) 3 ( q  q')S(-p q + p ' + q ' )  

IG(p, q)/~ ~) (e.4) 
• E2 oc ~(0), ( t<  

since [a(p), a*(p')]• = 3(p - p') for the various creation and annihila- 
tion operators. Hence [Ico(1)[l~, and thus I]Oll "~, do not exist for finite 
times, Q.E.D. 

I f  we wrote instead 

[a(p), ~*(p')]• = ~ ( p  - p'), ~(p)I0> = 0 (2.5) 

where ST # ~ will be specified later, we would get 

0> = f d~p ' d = q' ~ ( p  - p') ~T(q - q') ~ ( k  + p' (31 UI + q') X 

c x p  ( i E ' t  - ~lt I) 
• E'  G(p', q') (2.6) 

E'  =- (p'e + ~Tb2) 1/2 @ (q'~ + me) ~/z + ]p' § q'l 

instead of (2.3), and 

IIco(l)ll~ = f d3 p d 3 q d 3 k d ~ p l  d ~ ql d ~ kl 3~(p - Pl) ~T(q-- ql) 3 T ( k  - -  k~) 

X <101, (]1, kl] U(1)( t, --~176 q, kl U(1)( t,-~ 

t Compare, say, Schweber (1961a), p. 322. 
13 

(t < co) 

(2.7) 
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instead of (2.4). I f  now 3r(k ) is continuous, bounded, and satisfies 
some integrability condition for any value of the parameter 0 < T < o% 
the matrix element (2.6) will be a continuous density well-defined 
everywhere, I/~(1)112, (2.7), will be < oo and [If2112 will exist and equal 
unity for finite t if we retain the unitari ty of the so-modified U(t, t'). 

Then another desirable property follows gratis. For in (2.6) the 
coefficients of the exponential exp (iE' t) are now continuous, bounded, 
etc. functions so that  in the limit t -+  +0% (31U]0 > should vanish 
rigorously as a consequence of the Riemann-Lebesgue Lemma.~ 
Hence we can dispense with the ad hoc and unsatisfactory adiabatic 
cut-off exp (-z It I). The conditions on ST should in fact guarantee that  
[[~(1)112, (2.7), and ][co]l 2 -+ 0 as t ~ +0% and tha t  the limits t -~ +o% 
t ' - + - o o  of U(t,t'), in particular lira U ( t , - o o ) = S ,  exist rigorously 

t - -+  o9 

(probably in the strong operator topology). The limit T - +  o0, if 
taken at all, must be taken after these limits t ~ +0% t'--~ ~o, 
perhaps only in S-matrix elements, as will be discussed more in the 
last section. 

2.1. Conditions on 8r 

We shall postulate 

ST(k) is a real, nonnegative, continuous, bounded 
function of k2 in-oD < k~ < oo ( i=  1,2,3) (2.1.1a) 

oo 

/ 8T(k )d~k= 1, lim ST(k)=8(k) (2.1.1b) 
T - +  o:2 

- - o o  

8T(k-  k') is the kernel of a positive definite 
integral operator (for some function space to be 
specified later) (2.1. le) 

The meaning of the parameter T (0 < T < ~o) will be shown to be 
the time-of-flight allowed for free particle momentum measurements. 

For the present, these requirements seem to be necessary to achieve 
the cure of the U-difficulty as outlined above. We shall show below 
that  they follow automatically from the properties of stochastic 

t T h i s  s t a t e s  t h a t  if f (x) is  L I :  

If(x)l dx < 
- - o o  

then 

e x p  ( i x t ) f (x )  dx --> 0 as  t -+ co 

- - o o  
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space-time and the positive definite metric of state vector Hilbert 
Space. 

3. Stochastic Momentum Space 

We shall derive stochastic momentum space ab initio and later show 
how it follows from stochastic space-time together with T < co. 

3.1. The frequency function and its support 

The arguments parallel those for stochastic space-time (Ingraham, 
1964) for the most part. The main difference is the lack of a transla- 
tion group in momentum space. Thus let K~ be the random momentum 
coordinate of a given free particle for frame, or observer, cp. Lorentz 
form-invariant theories are impossible because the frequency function 
is not normalizable, due to the indefinite signature of space-time. Thus 
one is forced mathematically to the 'three-dimensional' case: the 
support of K~ is a space-like plane ~(~)  with normal n(~) .~  This 
corresponds to making K ~ a certain function of the spatial momentum 
K. But now--even more than in the case of position space--there are 
clearcut physical reasons for doing this, namely, particle energy 
measurements should always be reduced to the measurement of K 2, 
where we take the mass as constant by definition. Indeed, time-of-flight 
measurements, which yield only the velocity v, can never measure 
momentum unless we assume m is some given constant, compare 
Section 4. There are (at least) two reasonable assumptions :~: 

K = ~, K ~ = (k 2 -[- m2) 1/2 
(3.1.1a) 

k~ = mean momentum (case of 'dispersionless energy') 

K = ~, K ~ = (~2 • m2)1/2 ('realistic case') 
(3.1.1b) 

e ~(~)  

For simplicity we choose possibility (3.1. la) in this paper. 
The frequency function f(~; k), ~ e a (~) ,  for the random variable 

K'(~) whose mean value is k" = (k,wk), ~o k =- (k 2 § m2) 1/2, with support 
~(2f), 

~ ( ~ ) :  n ( ~ ) .  ( ~ -  k) = 0 w 

should be determined by the three principles [refer to Ingraham (1964) 
for a complete discussion]: (a) Relativity Pr inc ip le -  complete 

t n ( ~ )  is the  uni t  t ime-l ike vec tor  al igned along frame ~CP's t ime axis. 
Compare  the  analogues for s tochast ic  posi t ion space given in Physical 

Review, 152, 1290, equat ions  (1.4) and (1.5). 
w the  4-vector  n ( ~ )  to its own (unprimed) f rame ~ :  

n(~t~) ~ = (0001), one sees t h a t  this is the  locus - ~  < ~ < 0% ~4 =/c4 (=~Ok). 
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equivalence of all Lorentz frames ~ , ~ ' , ~ " ,  . . . ;  (b) Symmetry 
group P - Poincar~ group; (c) K 1, K 2, K 3 are stochastically indepen- 
dent. For the moment we assume that  f ( ~ ; k ) = f ( ~ - k ) ,  although 
whether this form is necessary (remembering that  there is no transla- 
tion group in momentum space) needs further elucidation. Invariance 
under the subgroup of homogeneous Lorentz transformations then 
gives f(~ - /c)  is a function only of 

(~ _ k)2 __ (~ _ k)2 _ (~4 _ ~4)2 

Then it will turn out t h a t f  = gaussian with standard deviation a, say. 

3.2. Appl i ca t ion  to Q F T  

Here we shall t ry  to incorporate stochastic momentum space into 
QFT while neglecting the already known modifications~ due to 
stochastic space-time. This is purely to shorten and simplify the 
exposition. I t  is almost certain that  such a simplified treatment 
cannot be completely satisfactory--indeed we have very good physical 
reasons to believe that  stochastic position space (~ > 0) is a pre- 
requisite for stochastic momentum space, compare the Introduction. 
So our hope is that  the properties derived here will survive grosso 
modo, unchanged in essence, in the full scale treatment. 

To make the relativistic covariance of the theory- - tha t  is, to repeat, 
the equivalence of all Lorentz frames--and the transformation pro- 
perties under the Poincard group clearer, we shall write down in 
parallel the formulas for any two frames ~ '  and ~ whose coordinates 
x'~ and x~ are connected by x'  = L x  =_ A x  + a. 

Consider a scalar free field q5 in ordinary QFT ; referred respectively 
to the frames ~ and S ' ,  it has the momentum space expansions 

(2=) -3/2 f d 4 kA(k)  ~( /d  + m 2) 0(k) e x p  (i/~. x) + H .  c (3 .2 .1)  r 

(2Ir) -3/2 f d 4/c' A ' ( /c ' )  ~(]c '2 § m 2) 0(]c') e x p  (i/c ' .  x ' )  § H .  ~'(x') c 

(x' = L x  - ./Ix § a) (3.2.1') 

where A (/~) and A'(]c') are the familiar 'four-dimensional' annihilaticn 
operators. We haves 

(1) SeMarity : 

q~(x) = 4)'(x') ~ A'(/c) = exp (- i lc .  a )A( lcA)  (3.2.2a) 

See footnote  ($) on p. 193. 
$ Our ma t r i x  convent ion  is (]cA)~ = / e v A "  and k. a = 1%a ~. Here  A'(k) ~nd 

r  m e a n  A'(/c')[~,=~ and ~b'(x')]x'=x respeetively.  



MOMENTUM SPACE AND THE EXISTENCE OF U(t,t') 199 

(2) Relativistic invariance (in 'passive form'):  

4)'(x) : U(L)q)(x) U(L) -~ ~ A'(k) : U(L)A(]c) U(L) -~ (3.2.2b) 

(3) Combination of (1) and  (2) (relativistic invarianee in 'active 
form') : 

4)(L-~x) : U(L)4)(x) U(L) -~ <:> U(L)A(k) U(L) -~ 
(3.2.20) 

= exp (--ik. a) A(IcA) 

where U(L) is the representat ion of P on Jt ~ determined by the algebra 
of the A(]c), A*(k). 

Now let k -+ K,  a random variable ; the A (K) becomes an operator 
(distribution)-valued function of a random variable. The mean 
value = a(k; ~o) is computed as usual :~ 

a ( k ; ~ )  -= ~ d ~ f f ( ~  - k)A(K(~)), ~a =/c a = w k (3.2.3) 
- - o o  

Similarly 
oo 

a'(/~';Lf') =- f da~ ' f (~ ' - k ' )A ' (K(U) ) ,  ~'4=lc'4 - - - -O9  k 

- - o o  

(3.2.3') 

where by  (3.1.1a) K ( ~ ) =  ~, K~(~)= c% and K ( U ) =  ~', K4(U)=  wk.. 
In  these integrals, since ~4 _ ]c4 = 0, ~,4 _ k,~ = 0 , fbecomes  a function 
of (~ - k) 2 and (~' - k') 2 respectively. 

Incidental ly,  thus  we must  have A (/c) defined off the mass shell [but 
only slightly, for distances/c• 2 = ]c 2 + []c . n(~q~ 2 ~ a 2, compare the 
analogous discussion for position space in Ingraham,  I~. L. Nuovo 
cimento, 24, 1117 (1962); 27, 303 (1963); and Bailey, D. & Ingraham,  
1%. L. (1966). Physical Review, 152, 1290] if we use the simpler random 
variable (3.1.1a). For  the more sophisticated (3.1.1b) we need only 
mass shell values of A (It). 

We can now define frame-dependent  fields r ~ )  and r ~q~') 
in position space by Fourier t ransforming with respect to the mean 
momenta  /c and /~' [ - m a k e  the replacements A ( k ) ~  a(]c;hF) and 
A'(k') -+ a ' ( /c ' ;S ' )  in (3.2.1)]. 

3.3. Transformation properties 

Having the a(/c; ~f) defined for every observer ~ ,  and knowing the 
t ransformat ion  properties (3.2.2a-c) of the A(K), we can now derive 
the analogue of (3.2.2a-c) for the mean operators. 

t See footnote (w on p. 197. 
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Take (3.2.2b) first. We know already that  since we have treated 
any two frames ~ ,  S '  exactly the same, the l~elativity Principle will 
be satisfied. Now very general arguments, t  irrespective of any 
dynamical details, show that  the expression of the Relativity Principle 
for fields (here in momentum space) must be 

Relativistic invariance (in 'passive form'): 

a'(]c; ~ ' )  = U(L)a(]c;~) U(L) -1, ~q~' = L - I ~  (3.3.1) 
where 

~ f '  = L - l  ~ f  ca  x ' ~  = A ~ x "  + a t~ (3.3.2) 

Equation (3.3.1) is easily verified on the explicit expressions by 
conjugating (3.2.3) by U(L), using U(L)A(K(~))U(L)-I= A'(K(~)) 
from (3.3.2b), and noticing that  the result is (3.2.3') for the value 
/c' =/c. 

As for (3.2.2a), its analogue is 
Scalarity: 

a'(/c; ~q~') = exp ( - ik .  a) a(l~A; ~ ' )  (3.3.3) 

which corresponds to the scalarity of the field r  for any frame 
~ ' ,  namely 

Sealarity: 
r ~ ' )  = r ~ ' )  (3.3.4) 

For each frame ~ '  is assigned a mean field: ~ '  -+ r  and each of 
these mean fields will be a scalar, that  is, have the same value at any 
given event referred to any frame. We define the components of ~ " s  
field a(~') ,  referred to the (unprimed) frame ~ ,  namely a(]c; ~q~'), as 
follows : 

a(k; ~ ' )  - f 
o(s 

d/~(~ - k)f(~ - k)exp [-i(K(~) - ]c) A -1 a] A (K (~) ) 

(3.3.5) 

Here a(~q~') is ~q~"s support: 

o(~q~') : n(~,q~') ~ (~:~ - ]c~) = 0, (3.3.6) 

n (~ ' )~  [~  (0001) in general], /%, and ~s are components referred to 
frame ~ ;  d~(~ - k) is the volume element which = d s ~' when written 

t See Ingraham, 1%. L. (1962). Nuovo  eimento, 26, 328, Section 3, and Ap- 
pendix 2 of tTenormalization Theory of Quan tum Fie ld  Theo~ W wi th  a Cut-off, to 
be published by Gordon and Breach. 
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in  t e r m s  of  ~ " s  coo rd ina t e s ;  a n d  a is t he  un ique  t r a n s l a t i o n  v e c t o r  
occu r r i ng  in the  connec t i on  (3.3.2) o f  ~ a nd  ~ " s  eoordina tes .T 

T h u s  a ( k ; ~ ' )  is essent ia l ly  the  m e a n  va lue  o f  A ( K ) ,  t he  or ig inal  
field re fe r red  to  t he  f r a m e  ~ ,  a v e r a g e d  over  ~ " s  suppor t .  B u t  in 
a d d i t i o n  the re  is a phase  f a c t o r  d e p e n d i n g  on t he  displacement  of  the  
or igins  o f  the  two  f rames ,  wh ich  is ne w  c o m p a r e d  t o  t he  case o f  
s tochas t i c  space- t ime .  N a t u r a l l y  a(k; ~t ~') --> a(k; 5~) g iven  b y  (3.2.3) 
if  ~ '  = 5~. N o t e  in p a r t i c u l a r  t h a t  t he re  is no  phase  f ac to r  in  this  case 
since a = 0. 

F r o m  (3.3.5) one sees t h a t  on ly  f r ames  differing b y  a spatial  r o t a t i o n  
h a v e  t he  same  m e a n  f i e ld - - in  pa r t i cu l a r  t r a n s l a t e d  f r ames  h a v e  
di f ferent  m e a n  f i e lds - - in  the  precise sense t h a t  if  a(~q ~) and  a ( ~ ' )  are  
re fe r red  to  some c o m m o n  f rame,  s a y  the  u n p r i m e d  one, t h e n  t h e y  are  
iden t ica l :  a ( k ; ~ ) = a ( k ; ~ ' )  i f  a n d  on ly  if  ~r a n d  ~ '  differ b y  a 
spa t ia l  ro t a t ion .  

N o w  one can  ve r i fy  (3.3.3) us ing t he  def ini t ion (3.3.5).:~ T h e n  
c o m b i n i n g  (3.3.1) a n d  (3.3.3) one gets  

Re la t iv i s t i c  i nva r i ance  in ' ac t ive  f o r m ' :  

U(L)  a(]c; ~ )  U(L)  -1 = exp ( - i k .  a) a(kA;  ~ ' ) ,  

(3.3.7) 

3.4. The  commuta t ion  relations 

On the  mass  shell one  has  for  t he  old sha rp  ope ra to r s  

[A(k), A*(q)] = 2Wk ~(k - q) (3.4.1) 

This translation a attached to observer ~ '  is of a slightly more complicated 
nature than the 4-vector n(~1). Both are only properties of ~ '  relative to some 
other frame, say ~ ,  because they do not assume any numerical values until one 
refers their components to some frame ~ ,  obtaining a ( ~ ' ) ,  and n(~')~.  But 
the a( ~q~)g depend further on the relative positions of the two origins, whereas 
the n(~ ' )~  are common to the whole class of translated frames. Thus a (~ ' )  
should more properly be written a(~q~'; ~ ) .  

:~ Put  kA for k and substitute ~ = ~'A in (3.3.5) (see footnote (:~) on p. 198). 
Then use f[(~:' - k)A] =f(~:'  - It), K(~'A)  = K(~')A,  and d/x[(~' - k)A] = dS~ '. 
Substituting ~v = ~:'~A% into (3.3.6), this becomes the locus -oo < ~' < co, ~:,4 = 
k '4 (=Wk') in virtue of Av, n ( ~ ' )  ~ = n(c~) ~ = (0001) (i.e., the new integration 
variables ~' are momenta referred to frame ~q~'). Thus multiplying by exp (-i/c. a), 
we get 

cO 

exp( ik .a )a(kA;  ~ ' )  = f d ~ ' f ( ~ ' - - k ) e x p ( - K ( ~ ' ) . a ) A ( K ( ~ ' ) A )  (1) 
- - o o  

By sealarity of the old sharp fields [ _-- first equation of equation (3.2.2)] the last 
two factors of the integrand =A'(K(~ ~)). But then (1) becomes (3.2.3') for 
k' = k, which proves (3.3.3), Q.E.D. 
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Assume tha t  they  have been extended slightly off the mass shell in 
such a way t h a t  (3.4.1) continues to hold. Then the ' three-dimensional 
ampli tudes '  

a(k; s - (2o~k) -1/~ a(k; Lf) 

and correspondingly for A (k) are connected by  

a(k;~q ~) = ; dS~f(~-k)A(~) (3.4.2) 
- - c O  

from (3.2.3), where we have wr i t t en f (~  - k) to emphasize t h a t  on the 
plane ~ ( ~ )  it  is a function only of ~ - k, in fact, of the 3-rotation 
invar iant  (~ - k) 2. Then 

a*(q; ~ ) ]  = f d 3 ~ d ~ p f ( g  - k ) f ( o  - q )~ (~  - p) [a(k; Ar 

= ~  d~ ~f(~ - k) f (~  - q) 
(3.4.3) 

= ] d ~ ~ f ( ~ ) f ( ~  + k - q) 

= 8~(k - q) 

F rom this form one can verify the properties postulated in (2.1. la-c) .  
Proper ty  (2.1.1a) follows from the fact  t ha t  the frequency funct ion 
f(~) itself has these properties and  is integrable in - ~  < ~ < oo. To 
verify (2.1.1b), integrate (3.4.3) with respect to k - q  and use 

d~f(~) = 1. As for the second par t  of (2.1.1b), one will require o f f  
tha t  it  gets arbitrari ly narrow as T -+ o% thus  for Ik - ql > 0 the 
overlap of the two factors in the last integral in (3.4.3) can be made 
as small as desired in this limit. Thus we shall have ~ ( k  - q) -~ ~(k - q), 
T --> ~. Proper ty  (2.1. lc) follows automatical ly ,  given the connection 
(3.4.2), as will be elucidated in Section 5. 

3.5. Unitary of U(t,t'; ~)  
Remember  t ha t  we formed the position space mean fields r ~q~) 

by Fourier  t ransforming the a ( k ; ~ )  with respect to the mean 
momentum/c ,  which amounts  to replacing A (k) by  a(/c; oW) in (3.2.1). 
Now U(t,t') is the T-exponential  (2.1), where d/C~(x)--Jdi[~b(x)] is 
some polynomial  in the fields ~b(x), . . .  and their  derivatives. Our 
tenta t ive  prescription for the stochastic U operator U(t,t';~q ~) is to 
make the replacement ~b(x) --> r ~ )  in ~zEr in the expression 
(2.1). At  the same t ime T must  be understood as T ~  = time-ordering 
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with respect to t _= ~ ' s  time coordinate, t Then since Jt~i[r c~)] is 
still a self-adjoint operator,$ U (t, t'; ~f) is unitary. 

But this definition gives exactly the U-matrix elements modified as 
proposed in Section 2. Namely, there also we proposed simply to 
replace A(k) by operators (now identified as a (k ;~) )  having the 
modified commutation relations (2.5) in the usual U(t,t'). Hence we 
know that  the matrix elements of our stochastic U(t, t'; ~f) exist, they 
are free from the 'U-difficulty'. 

We can now see explicitly how the spatial translation invariance of 
U(t,t ';~) is broken. This operator is a functional of the operators 
a(/~;~), a*(k;~) ,  k E mass shell, with complex number coefficients 
depending on t and t'. Then by  (3.3.7) specialized to L = spatial transla- 
tion a, 

U(a) U(t, t'; 5r U(a) -1 = U(t, t'; ~ ' )  
where (3.5.1) 

X r ~ x % - a ~  x ' 4 ~ x  4 

where U(t,t';~r is the same functional of a(k;~f'), a*(k;Sr the 
phase factors exp ( - i  k. a) cancelling out completely, as we illustrate 
below. But  since U(t, t'; ~ce') ~ U(t, t'; ~ )  since a(k; ~ ' )  ~ a(k; cr 

[U(a), U(t, t'; ~ ) ]  r 0, (Q.E.D.) (3.5.2) 

I t  may give insight to do this calculation explicitly. Take the 
vacuum-3 particle component of U(t,-~; ~ )  in order 0(e) as we did in 
Section 2, and conjugate it by U(a). Neglecting irrelevant factors, 
this is 

f dSp d 3 q d 8 k ~(p + q + k) a*(p; ~cr b*(q; ~f) c*(k; ~cr U(a) 

exp (lEt) (3.5.3) 
• E G(p, q) U(a) -1 

[E as in (2.3), a*, b*, c* create an e-, e + and a photon, respectively] 
where a*(p ;~) ,  etc., are given by  (3.4.2). Now 

U(a) a(p; ~f) U(a) -1 = exp ( - ip .  a) a(p; ~co,), etc. 

where ~ " s  coordinates are x' = x %- a, x '4 = x ~. One therefore gets in 
the integral (3.5.3) the factor expi(p %- q %- k) .a  which = 1 in virtue 

For since mieroeausality ('locality') is slightly violated, T ~  ~nd T~o, for 
different frames ~f, ~f' are not in general equivalent. This definition with T ~  
preserves Bogoliubov causality. See Bailey, D. and Ingraham, ]%. (1966). 
Physical Review, 152, 1290. 

Notice that  it is in fact an ordinary unbounded operator whereas 
J4fiE~5(x) l was only an operator distribution. 
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of the 8-function. Classically this means t ha t  U(a) commutes  with the  
component  shown in (3.5.3); bu t  now we have t h a t  the  result ing 
creat ion operators  are in fact  a*(p;~W'), etc., r a the r  t h a n  a* (p ;~ ) ,  
etc. 

4. Derivation of f (~ - k)from Time-@Flight Measurements 

In  this section we show tha t  stochastic posit ion space toge ther  wi th  
a finite t ime T for m o m e n t u m  measurements  b y  the t ime-of-flight 
me thod  imply  a stochastic m o m e n t u m  space, and derive its par t icu lar  
form. The resulting real izat ion is in accord with the abs t rac t  t h eo ry  
developed independent ly  in the  last section. 

For  simplici ty we confine ourself  here to nonrelat ivis t ic  velocities. 
The relativist ic case has been done and will be given elsewhere. 

B y  the t ime-of-flight me thod  of  measuring the m o m e n t u m  of  a free 
particle,  one measures the part ic le 's  positions xl  and x2 at  two times,  
tl  and t2 respectively.  This determines  the  veloci ty  v, and, given the 
mass, the  spatial  m o m e n t u m  k. Thus  when space-t ime becomes 
r andom:  x -+ X - r andom space-t ime variable,  the  3 -momentum K, 
defined by  

S - m(X 1 - X2)/(X14 - X24) (4.1) 

becomes random,  a funct ion of two independent  r andom variables 
XI~ , X2t *. F r o m  now on we fix the  Loren tz  frame,  call it  ~W, the  
unpr imed  frame.  The f requency  funct ion f of a r andom variable  
defined as a funct ion of  one or more r andom variables is ob ta ined  b y  
s t andard  rules : t  

f (~ ;k )  = ; d * X l d a X 2 p ( X l - x l ) p ( X 2 -  x2) 

- ~  (4.2) 
x ~ [ ~  - m ( X l  - X 2 ) / ( X 1  ~ - X 2 ~ ) ]  

Here  f (~ ;k )  = f (~ ;  Ic), the  m o m e n t u m  f requency  function,  defined on 
the  plane ~(Lf): -co < ~ < 0% ~ = ~ok. p(X - x) ~- g(X - x) t  is the 
f requency  funct ion of the r andom space-t ime coordinate  Xg of mean  
value xg defined on the  plane -cr < X < ~,  X ~ = x ~. (We are adopt ing  
here the  case of 'dispersionless t ime'  for simplicity,  a l though the  more  
realistic case of the  'Einste in  clock',~: namely  X ~ = I X -  x I + x 4 +cons t . ,  
would undoub ted ly  be bet ter . )  

See any book on random variable theory. We change notation slightly 
from that of Ingraham (1964). 

:~ Compare Physical Review, 152, 1290, equations (1.4) and (1.5). 
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First ,  we can verify S d3 ~f(~;k) = 1 directly on (4.2). 
Now, our basic assumption is t ha t  we use the fixed finite time-of- 

flight T for all momen tum measurements.  This means t ha t  the 
measured values ( =-mean values) xl 4, x24 of the two times satisfy 

xl ~ -- x2 4 = T (4.3) 

Since we are using the simplified case of dispersionless time, we can 
directly subst i tute  T for X1 ~ - X2 ~ in the S-function in (4.2). 

Then we proceed to manipulate  (4.2), using at  the end the known 
form of p ( X - x ) .  Make the change of variables X 1' = X 1 - X 2 ,  
X2' = X2 - x2, integrate out the S-function, and drop primes : 

3 T ~) p(X2) (4.4) 

From the theory  of stochastic space-time 

p ( X  - x) = N e x p  [- (X - x)2/2t2], N --- [~/(27r)1] -~ (4.5) 

We shall need the composition law of gaussians : 

N ~ f d 3 X exp [ - (X - x)2/2~ 21 exp (-X2/2~ 2) = 2 -~/~ N (--X2/4~ 2) e x p  

(4.6) 
Thus 

f(~; k) = f ( ~  - k) = [~/(27r)a] -3 exp [-(~ - k)2/2a ~] (4.v) 
a - ~/2 m2/T,  k --- m(x 1 - x2)/T 

So f itself is a three-dimensional gaussian with the expected mean 
value k. We see tha t  the s tandard  deviat ion a 0: h/T, as expected 
from the physical arguments  adumbra ted  in the Introduct ion.  Fur ther ,  
we see t h a t  a < m, which merely reflects the obvious fact tha t  for a 
given velocity uncer ta in ty ,  the uncer ta in ty  in momen tum is directly 
proport ional  to the mass. Finally,  note tha t  f(~; k) is indeed a function 
of the difference ~ - k. 

4.1. Explicit  form of ~T 

We can calculate the specific form of ~T using the general formula 
(3.4.3) and the specific form o f f  found here. The gaussian composition 
law (4.6) yields 

ST(k - -  q )  = [ ~ ( 2 ~ )  b]  - 3  exp [ - (k  - q)2/2b2] 
b - 2m~/T (4.1.1) 

Nowf(~  -- k), (4.7), obeys all the postulates of stochastic momen tum 
space developed independent ly  in Section 3 (compare the remarks 
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following equation (3.1.1.)], hence, as proved in Section 3 [equation 
(3.4.3) if.l, 3 T given by  (4.1.1) has the properties (2.1.1). In particular 
note that  3 T -~ 8 as T--> ~ as the gaussian approximation to the 
~-function. Further, although we know that  the spectrum of this 
8T(k -  q) is positive (compare Section 5), we derive it anyway for 
later use. 

Recall that  the Fourier transform of a gaussian is a gaussian. We 
can write this in the following way: 

f d ~ ~ ( k  - q) (iq. x) = ( -x  2 b2/2) (ik. x) (4.1.2) q exp exp exp 

Thus the corresponding integral operator has 'non-normalizable 
eigenveetors' exp (ik. x), - ~  < k < ~, labelled by  any 3-vector x and 
corresponding 'eigenvalues' exp(-x2b2/2)> 0. Thus it is positive 
definite. 

5. 'Relatively Free' Particle States 

I f  we build stochastic QFT as in Section 3, the state vector Hilbert 
Space is unchanged: it is still that  space generated from the vacuum 
by  the old sharp operator algebra of the A(k), A*(k). However, let 
us look at the properties of the 'relatively free' particle states 
]kl, k2 . . . .  kn; • }  generated by  applying the mean creation operators 
a* (k ;~ )  a number of times to the vacuum. These are bona-fide 
( _= normalizable) states. There is an ensemble of these states for each 

and they are generally different for different ~ .  ~Tow since we still 
have a(k; ~)10} = 0, any k, any ~q~, n-particle states are still strictly 
orthogonal to m-particle states for n # m. The new feature is that  
n-particle states with different sets of mean momenta are now not 
strictly orthogonal: 

<~;k[q; ~ >  = <01 [a(k; ~e), a*(q; ~e)][0} 
(5.1) 

= ~ ( k  - q) 

Incidentally, if r ~-S dSke(k)]k; r for some complex coefficients 
e(k), the Hilbert Space requirement [@]]~ ~> 0 gives 

f d ~ k d 3 qe(k)c(q)~T(k- q) 0 (5.2) 

for any c(k), hence the requirement that  the kernel ~T(k-  q) be 
positive definite. This is the origin of the requirement (2.1.1c), where 
the Hilbert Space (i.e., the inner product) was simply determined by  
the two properties (2.5). However, note that  if we derive the a(k; ~f) 
as the averages of the A (() as in Section 3, ~ is already determined 
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by  the commuta t ion  relations of the A(~) and A*(~) and A(~)I0 } = 0 
and we know it is a Hilbert  Space. Thus we know I]r ~> 0 and hence 
from (5.2) we know tha t  ~T given by  (3.4.3) is positive definite. 

About  these ensembles E(A ~ of relatively free n-particle states we 
shall need to require t ha t  t hey  are at  least l inearly independent  and 
form a basis for Jif in the sense tha t  5/~ = closure of the finite complex 
linear span of E(A4) for each ~<~. From Lorentz invarianee in the 
'active form'  (3.3.7) these bases are t ransformed into each other (up 
to phase factors) by  the action of the Poincar6 group, e.g. 

V(L)I/c; ~q~> =exp(ilc.a)IlcA;~f'>, ~q~' : L-I~W (5.3) 

Finally,  a most impor tan t  point:  Ikl,k2, . . .  k ~ ; ~ }  will represent 
that physical n-particle state for which observer c f measures the mean 
momenta kl, k2, . . .  k~. These states are then the physical ones, between 
which we want  to compute t ransi t ion probabilities, not the old 
orthogonal states A * ( k l ) . . .  A*(k~)]0>, which become mathemat ica l  
constructs with no direct physical meaning. Indeed, in Section 2 it 
was the matr ix  element of U(t , t ' ;~)  between these relatively free 
particle states tha t  we computed.  

The name is justified because if momen tum space is random, we 
cannot  distinguish a really free particle from one acted on by an 
interact ion sufficiently weak to give a change in momen tum of the 
s~me order as the uncer ta in ty  a. 

6. Inequalities and Limits 

As one sees from the foregoing, U(t , t ' ;~)  is well defined for any  
T < o0. Thus the formalism will give an answer for the transi t ion 
probabil i ty  between an initial s tate of ni particles of mean momenta  
{Pl,P2, . . .  Pn~} ~ P~ 'at  t ime t" to a final s tate of nj particles of mean 
momenta  P~t 'at  the later t ime t ~ namely 

- u(t, r; se)lP ; (6 .1 )  

whatever  T. 
However,  this well defined number  m a y  bear little relation to 

experiment  unless T is chosen in an opt imum way [for each experiment,  
i.e., each part icular  U-matrix element (6.1)], owing to the basic fact 
of random variable theory  tha t  the larger the dispersion, the poorer 
is the mean value as an approximat ion to the result of any  individual 

t I n  o rd inary  QFT (~ = 0) these  cons t an t  e igens ta tes  of the  to ta l  4- 
momentum P., etc. represent only the instantaneous momentum of the 
particles at the finite times t and t', of course. 
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measurement .  In  this final section we therefore give some prel iminary 
thinking on this question; we do not  expect to get to the bo t tom here 
of what  is undoubted ly  a deep subject. 

I n  the current QFT (a = O) there is no trouble defining the state of 
m o m e n t u m p  'at  t ime t'. This is in fact just  the basic idea of the differen- 
t ial  calculus. One mus t  take  T sufficiently short t h a t  the change in p 
due to the interact ion =- (AP)in t is much less t han  the mean p deter- 
mined by  the time-of-flight method  [defined in equat ion (4.7)] : 

(zJP)int < Pme~n (6.2) 

Since space-time can be measured arbitrari ly sharply, the shorter T 
is, the better.  This is expressed by Top t = 0. 

However,  in the stochastic QFT presented here (2 > 0) this s i tuat ion 
is changed. Jus t  as in current QFT one has the inequal i ty (6.2), estab- 
lishing an upper bound on T (depending on the details of the inter- 
action, the experiment  in question, and so on, which we shall not  t r y  
to est imate here). Bu t  T mus t  not  be t aken  too short either, or else 
the error (Ap)stoc h in p due to the stochastic mo me n t u m space: 
(~JP)stoeh ~ a, the s tandard  deviation, will be of the same order as 
Pmean. This yields the inequal i ty  a < Pmean, or by  (4.7) 

~ zJx (6.3) 

where Ax - Ix1 - x21. Thus, irrespective of the details of the experi- 
ment ,  the interaction, etc., the 'distance of flight' ~lx must  be much 
greater t han  the intrinsic space-time dispersion 2. This yields a lower 
bound on T depending on the velocities, etc. Hence there is some 
op t imum time-of-flight Topt > 0 for each U-matrix element. 

Let  us raise another  question: what  is the relation between the 
t ime magni tudes  T and t - t' ? Briefly, it seems t h a t  there is no relation. 
The reasoning is as follows. 

There are three disjoint t ime intervals : first one prepares the initial 
s tate --- measures the initial mean momenta  P~ in an interval  I i of 
length T;  next,  the particles are allowed to interact  during the interval  
I an t -  (t,t'); finally the final mean momenta  Pf are measured in an 
interval  I / o f  length T. These intervals must  not  overlap or else by  
the basic postulates of quan tum mechanics the mat r ix  element (6.1) 
will not  represent the probabil i ty P/~-i; i.e., U(t, t'; ~f) represents the 
t ime evolution of the system between t' and t only if  no measurements  
are made within t h a t  interval.  Now just  because t hey  do not  overlap, 
we can see no physical reason for any  necessary, general inequalities 
between them. I t  seems, on the contrary,  t ha t  t and t' should be freely 
assignable as part of the da ta  defining the desired experiment;  and 
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once this exper iment  is fixed, T is de termined  independent ly  as Topt 
by  other  da ta :  the size of ~, the s t rength  of  the  interact ion,  the  
velocities, etc., as argued above.  

The only  l imita t ion of this sort  is given b y  the  mathemat ics :  we 
know tha t  for finite t or t' one cannot  take  the  limit T -+ co or else one 
falls back  into the U-difficulty (e.g., lira IloJ(1)l[2, T -+ o% does not  exist,  
compare  equa t ion  (2.7)). The  physical  in te rpre ta t ion  of this fact  
seems to be t ha t  we do not  have an arbi t rar i ly  long t ime to measure 
initial or final m o m e n t a  if the exper iment  begins or ends at  a finite 
t ime. This in spite of the fact  t ha t  we saw no physical  reason for a 
dependence between T and t - t' just  above. 

On the other  hand,  as i l lustrated in Section 2, the  limit t - >  +oo, 
t' - + - c o ,  T finite and fixed, makes mathemat ica l  sense: this makes 
U ( t , t ' ; ~ ) - - - > S ( ~ ) ,  a well-defined limit. Wh e th e r  the  subsequent  
limit 

-- lira S ( ~ )  
T-+oo 

exists we do not  know, bu t  conjecture  t ha t  it  does, and t h a t  
coincides wi th  the current  S except  where the  la t ter  breaks down 
because of the  U-difficulty, namely  in the (practically un impor tan t )  
v a c u u m - v a c u u m  mat r ix  elements.  In  any  case T should p robab ly  be 
kep t  finite even in the S-opera tor  S ( ~ ) ,  its magni tude  de te rmined  by  
the actual  exper imenta l  conditions. 
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